Радиальное дробление зиготы. Степень дробления и измельчения




Биологическое значение дробления

  • Переход к многоклеточности
  • Увеличение ядерно-цитоплазматического отношения

Характерные черты дробления

Дробление как особый этап онтогенеза животных имеет характерные черты, которые свойственны большинству животных, но могут отсутствовать у некоторых групп.

  1. Бластомеры делятся очень быстро (у дрозофилы - раз в 20 минут) и более или менее синхронно.
  2. Интерфаза сокращена до S-периода; в связи с этим транскрипция собственных генов зародыша полностью подавлена, транскрибируются только запасённые в яйцеклетке материнские мРНК.
  3. Между делениями нет периода роста, так что общая масса зародыша не растёт.

По всем этим характеристикам дробление млекопитающих резко отклоняется от типичного. Бластомеры делятся у них медленно, синхронность нарушается уже после 1-2 делений, в это же время активируется собственный геном зародыша.

Классификация типов дробления

На основе ряда существенных характеристик (степень детерминированности, полнота, равномерность и симметрия деления) выделяют ряд типов дробления . Типы дробления во многом определяются распределением веществ (в том числе, желтка) по цитоплазме яйца и характером межклеточных контактов, которые устанавливаются между бластомерами.

Дробление может быть: детерминированным и регулятивным; полным (голобластическим) или неполным (меробластическим); равномерным (бластомеры более-менее одинаковы по величине) и неравномерным (бластомеры не одинаковы по величине, выделяются две - три размерные группы, обычно называемые макро- и микромерами); наконец, по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов.

По степени детерминированности

Детерминированное

Недетерминированное (регулятивное)

(Бластомеры тотипотентны)

По степени полноты делений

Голобластическое дробление

Плоскости дробления разделяют яйцо полностью. Выделяют полное равномерное дробление, при котором бластомеры не различаются по размерам (такой тип дробления характерен для гомолецитальных и алецитальных яиц), и полное неравномерное дробление, при котором бластомеры могут существенно различаться по размерам. Такой тип дробления характерен для умеренно телолецитальных яиц.

Меробластическое дробление

  • Дискоидальное
  1. ограничено относительно небольшим участком у анимального полюса,
  2. плоскости дробления не проходят через всё яйцо и не захватывают желток.

Такой тип дробления типичен для телолецитальных яиц, богатых желтком (птицы , рептилии). Такое дробление называют также дискоидальным , так как в результате дробления на анимальном полюсе образуется небольшой диск клеток (бластодиск).

  • Поверхностное
  1. ядро зиготы делится в центральном островке цитоплазмы ,
  2. получающиеся ядра перемещаются на поверхность яйца , образуя поверхностный слой ядер (синцитиальную бластодерму) вокруг лежащего в центре желтка. Затем ядра разделяются мембранами, и бластодерма становится клеточной.

Такой тип дробления наблюдается у членистоногих .

По типу симметрии дробящегося яйца

Радиальное

Билатеральное

Имеется 1 плоскость симметрии. Типично для аскариды .

Анархическое

Бластомеры слабо связаны между собой, сначала образуют цепочки или бесформенную массу; часто у одного вида встречаются разные варианты расположения бластомеров. Типично для кишечнополостных .

Литература

  • Белоусов Л.В. Основы общей эмбриологии. - Москва: Издательство Московского университета: Наука, 2005. - ISBN 5-211-04965-9
  • Токин Б.П. Общая эмбриология: Учеб. для биол. спец. ун-тов. - 4-е изд., перераб. и доп. - М.: Высш. шк., 1987. - 480 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Дробление (эмбриология)" в других словарях:

    Дробление: Дробление (технология) измельчение твёрдого тела до определенного размера; Дробление (полиграфия) воспроизведение на оттиске одного и того же печатающего элемента дважды, со смещением; Дробление (эмбриология) ряд… … Википедия

    Дробление: Дробление (технология) измельчение твёрдого тела до определенного размера; Дробление (полиграфия) воспроизведение на оттиске одного и того же печатающего элемента дважды, со смещением; Дробление (эмбриология) ряд последовательных… … Википедия

    - (от древнегреческого ἔμβρυον, зародыш, «эмбрион»; и λογία, логия) это наука, изучающая развитие зародыша. Зародышем называют любой организм на ранних стадиях развития до рождения или вылупления, или, в случае растений, до момента прорастания.… … Википедия

    Дробление: эмбрион млекопитающего. z.p. zona striata, p.gl полярные тельца, a. двуклеточная стадия, b. четырёхклеточная стадия, c. восьмиклеточная стадия, d, e. морула Дробление ряд последовательных митотических делений оплодотворенного… … Википедия

    дробление радиальное - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДРОБЛЕНИЕ РАДИАЛЬНОЕ – первое дробление меридиональное, проходит в меридиональной плоскости яйца. Второе дробление также меридиональное, оно проходит через главную ось яйца, но под прямым углом к плоскости первого дробления.… …

    дробление анархическое - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДРОБЛЕНИЕ АНАРХИЧЕСКОЕ [БЕСПОРЯДОЧНОЕ, ХАОТИЧНОЕ] – дробление яиц метагенетических медуз – Oceania armata. Первая борозда дробления меридиональная, врезающаяся, появляется она на анимальном полюсе. Вторая борозда тоже… … Общая эмбриология: Терминологический словарь

    дробление гетероквадратное - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДРОБЛЕНИЕ ГЕТЕРОКВАДРАТНОЕ – дробление аннелид, моллюсков, немертин, планарий. Неравномерное спиральное дробление, когда клетки основного квартета (первые четыре бластомера) неодинаковы по величине, то и их производные также… … Общая эмбриология: Терминологический словарь

    дробление асинхронное - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДРОБЛЕНИЕ АСИНХРОННОЕ – дробление яиц телолецитальных (амфибия). Деление вегетативных бластомеров происходит медленней, по сравнению с бластомерами анимального полюса … Общая эмбриология: Терминологический словарь

    дробление билатеральное - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДРОБЛЕНИЕ БИЛАТЕРАЛЬНОЕ [ДВУСТОРОННЕ СИММЕТРИЧНОЕ] – дробление яиц нематод, коловраток, асцидий. Характеризуется появлением билатеральной симметрии в расположении бластомеров уже на ранних этапах дробления. Каждый бластомер… … Общая эмбриология: Терминологический словарь

    дробление голобластическое - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДРОБЛЕНИЕ ГОЛОБЛАСТИЧЕСКОЕ [ПОЛНОЕ] – дробление яиц алецитального (плоские черви), изолецитального типа (ланцетник) и некоторых яйцевых клеток телолецитального типа (амфибии). Дробятся все части зиготы. При дроблении вся… … Общая эмбриология: Терминологический словарь

Отношение размеров кусков или зерен исходного материала перед дроблением и измельчением к размеру кусков или зерен дробленого или измельченного продукта называют степенью дробления или степенью измельчения.

Со степенью дробления связаны расход энергии и производительность дробилок и мельниц. Для определения степени дробления предложено несколько расчетных формул. Обычно ее определяют как отношение размеров максимальных по крупности кусков материала до и после дробления.

В практике обогащения диаметром кусков сыпучих материалов считают наименьшую величину отверстий сит, через которые при грохочении куски еще проходят. Поэтому степень дробления вычисляют как отношение диаметров предельных отверстий сит для грохочения дробимого материала и дробленого продукта. Форма отверстий сита при этом должна быть одинаковой, так как она влияет на результаты грохочения .

Степень дробления, рассчитанная по вышеприведенной формуле, характеризует процесс дробления недостаточно полно. Допустим, что при дроблении двух материалов, имеющих одинаковые исходные характеристики крупности, получены продукты с одинаковыми максимальными кусками, но с разными характеристиками крупности (рис. 1.5.1).

Суммарная характеристика «по плюсу» для одного продукта выпуклая, а для другого - вогнутая. Это означает, что второй продукт раздроблен мельче, чем первый, но если подсчитать степени дробления по отношению размеров максимальных кусков, то они окажутся одинаковыми. Отсюда следует, что степень дробления более правильно вычислять как отношение средних диаметров, которые находятся с учетом характеристик крупности исходного материала и продукта дробления:

где Dcp - средний диаметр кусков исходного материала; dcp - средний диаметр кусков дробленого продукта.

На обогатительных фабриках дробление и измельчение полезных ископаемых перед обогащением обычно выполняются с высокой степенью сокращения размеров кусков. Например, перед флотационным обогащением полезное ископаемое измельчают до крупности < 0,1 мм. Если при этом руда поступает с карьеров, то размер максимальных кусков в исходном материале может доходить до 1500 мм. Тогда общая степень сокращения размеров составит

i= 1500/0,1 = 15 000.

Получение таких высоких степеней сокращения размеров в одной машине практически невозможно. По своим конструктивным особенностям машины для дробления и измельчения эффективно работают только при ограниченных степенях сокращения размеров кусков, а потому рациональнее дробить и измельчать материал от исходной крупности до требуемого размера в нескольких последовательно работающих дробильных и измельчающих машинах. В каждой из таких машин будет осуществлена лишь часть общего процесса дробления или измельчения, называемая стадией дробления, или измельчения.

В зависимости от крупности дробимого материала и дробленого продукта стадии дробления имеют особые названия: первая стадия - крупное дробление от 1500...300 до 350... 100 мм; вторая стадия - среднее дробление от 350... 100 до 100...40 мм; третья стадия - мелкое дробление от 100...40 до 30...5 мм (пределы крупности исходного и дробленого продукта, ограничивающие стадии, условны и приблизительны).

Известны случаи, когда дробление осуществляется в четыре стадии. Например, четырехстадийные схемы дробления применены на некоторых обогатительных фабриках для железных руд, содержащих значительное количество крупных плоских кусков.

Последующую операцию, в которую поступает материал после мелкого дробления (куски размером < 30 мм), называют измельчением. В зависимости от требуемой крупности материала перед обогащением его можно измельчать в одну, две или даже три последовательные стадии, которые соответственно называют первой, второй и третьей стадиями измельчения.

Дробление и особенно измельчение - весьма энергоемкие операции, на которые расходуется около половины энергии, потребляемой обогатительной фабрикой.

Оплодотворение играет чрезвычайно важную роль в развитии, но оно - лишь только первая его ступень. Зигота с ее новым генетическим потенциалом приступает к созданию многоклеточного организма. У всех животных это начинается с процесса, носящего название дробление - серии митотических делений, в результате которых огромный объем цитоплазмы яйца разделяется на многочисленные клетки меньшего размера. Такие клетки, образующиеся в период дробления, называются бластомерами.

Объем зародыша во время дробления не увеличивается. В большинстве других случаев клеточной пролиферации в период между митозами происходит рост клеток; клетка увеличивается в объеме почти вдвое и затем делится. Такой рост приводит к четкому увеличению общего объема клеток при сохранении относительно постоянного отношения объема ядра к объему цитоплазмы. Однако в период дробления зиготы объем цитоплазмы не возрастает: огромная масса цитоплазмы зиготы разделяется на все более мелкие клетки. Такое деление цитоплазмы яйца, не сопровождающееся ростом, осуществляется путем выпадения интерфазного периода роста между делениями.

Дробление - строго координированный процесс, находящийся под генетическим контролем. Видовые особенности процесса дробления у разных животных определяются двумя основными параметрами: количеством и распределением желтка в цитоплазме и цитоплазматическими факторами, которые влияют на ориентацию митотического веретена.

Наибольшие сложности возникают при изучении дробления у млекопитающих. Яйца млекопитающих относятся к числу самых мелких в животном царстве, что делает затруднительной экспериментальную работу с ними. Диаметр зиготы человека составляет, например, всего лишь 100 мкм, и ее объем меньше одной тысячной объема яйца шпорцевой лягушки. Кроме того, по количеству зигот, которые могут быть получены от одной особи, млекопитающие несравнимы с морскими ежами или лягушками. Обычно у самки млекопитающего одновременно овулирует менее 10 яиц. Кроме того, воспроизведение вне организма матери условий, необходимых для нормального дробления эмбрионов создает дополнительные методические сложности. Однако, к сегодняшнему дню процесс дробления у млекопитающих описан достаточно подробно.

Ооцит млекопитающих, высвобождаясь из яичника, попадает в яйцевод. Оплодотворение происходит в ампуле яйцевода - его отделе, расположенном вблизи яичника. В это время мейоз завершается, и приблизительно через сутки начинается первое деление дробления.

Локализация ранних стадий развития в половых путях самки (Тисктапп Вир1езз в/ а1., 1972; по Гилберт С., 1993):

1 - ранняя стадия имплантации; 2 - бластоциста; 3 - матка; 4 - морула; 5 - двухклеточная стадия; 6 - яйцевод; 7 - первое деление дробления; 8 - оплодотворение; 9 - яичник.

Деления дробления у млекопитающих относятся к числу самых медленных, встречающихся в животном царстве. Каждое из них продолжается от 12 до 24 часов. Тем временем дробящййся зародыш передвигается по яйцеводу по направлению к матке. Первые деления дробления происходят во время перемещения яйца по яйцеводу (рис. 17).

Первая особенность дробления млекопитающих заключается в относительно медленном темпе делений. Второе важное отличие состоит в своеобразном расположении бластомеров относительно друг друга. Первое деление представляет собой нормальное меридиональное деление, т. е. плоскость деления проходит через полюса зиготы. Однако при втором делении один из двух бластомеров делится также меридионально, а второй - экваториально. Такой тип дробления называется чередующимся (рис. 18).

Третьим важным отличием дробления у млекопитающих является выраженная асинхронность раннего дробления. Бластомеры у млекопитающих не делятся все одновременно, поэтому у зародышей не происходит равномерного нарастания числа бластомеров от 2-клеточной к 4- и 8-клеточной стадиям; зародыши часто содержат нечетное число клеток.

Поскольку яйцеклетки млекопитающих относятся к изо- лецитальному типу, т. е. содержат минимальное количество равномерно распределенного в цитоплазме желтка, для млекопитающих характерно так называемое полное, или голоб- ластическое дробление. Это означает, что борозды дробления проходят через все яйцо. Таким образом, дробление млекопитающих является полным чередующимся асинхронным.

Схема чередующегося дробления млекопитающих (Gulyas, 1975; по Гилберт С., 1993)

Еще одно важное отличие дробления у млекопитающих от всех других типов дробления заключается в явлении компактизации. Бластомеры млекопитающих на 8-клеточной стадии располагаются рыхло, между ними остаются большие пространства. Однако после третьего деления дробления поведение бластомеров резко изменяется. Они внезапно сближаются, площадь контакта между ними максимально увеличивается, и они образуют компактный клеточный шар. Эта тесная упаковка стабилизируется плотными контактами, которые образуются между клетками, расположенными на поверхности шара, и изолируют лежащие внутри клетки. Между клетками внутри шара возникают щелевые контакты, которые позволяют малым молекулам и ионам переходить из клетки в клетку.

Сегодня имеется много данных о том, что компактизация связана с явлениями, происходящими на клеточных поверхностях соседних бластомеров. Во-первых, до компактизации у каждого из восьми бластомеров наблюдаются далеко идущие изменения плазматической мембраны, известные под названием поляризации. Во-вторых, в процессе компактизации участвуют специфические белки клеточной поверхности. Одним таким белком является увоморулин - гликопротеин с молекулярной массой 120 000 дальтон. Антитела к молекуле увоморулина вызывают декомпактизацию морулы и подавляют прикрепление клеток друг к другу. В-третьих, плазматическая мембрана при компактизации может также изменяться вследствие реорганизации цитоскелета. На соседних клеточных поверхностях в результате образования актиновых микрофиламентов возникают микроворсинки, прикрепляющие клетки друг к другу. Именно на ворсинках функционирует увоморулин как медиатор межклеточной адгезии. Уплощение поверхностей соседних бластомеров в месте их контакта может вызываться укорочением микроворсинок путем деполимеризации актина.


Основные стадии доимплантационного развития млекопитающих (по Гилберт С., 1993):

Клетки компактизованного зародыша делятся и образуют 16-клеточную морулу (рис. 19). Такая морула состоит из небольшого числа внутренних клеток, окруженных более многочисленными наружными клетками. Большая часть потомков наружных клеток становится клетками трофобласта (или трофэктодермы). Эта группа клеток не образует эмбриональных структур, а превращается в хорион , участвующий в образовании плаценты. Сам зародыш формируется потомками внутренних клеток 16-клеточного зародыша. Эти клетки образуют внутреннюю клеточную массу (ВКМ), которая и дает начало зародышу. Клетки ВКМ отличаются от клеток трофобласта не только по своему виду, но и по спектру белков, которые они синтезируют на этой ранней стадии. К стадии 64 клеток внутренняя клеточная масса и клетки трофобласта превращаются в полностью сформированные клеточные слои, ни один из которых не поставляет клеток другой группе. Таким образом, возникновение различий между бластомерами трофобласта и внутренней клеточной массы является первым процессом дифференцировки в развитии млекопитающих.

I - компактизация; II - кавитация, а - ранняя 8-клеточная стадия; б - компактный 8-клеточный зародыш; в - морула (поперечный разрез); г - бластоциста. 1 - плотные контакты; 2 - внутренняя клетка; 3 - наружная клетка; 4 - щелевые контакты; 5 - клетка трофобласта; 6 - внутренняя клеточная масса; 7 - полость бластоцисты.

Многочисленные эксперименты показали, что судьба клетки зависит от ее пространственного положения в составе морулы. Если любой бластомер 4-клеточного зародыша мыши поместить на наружную поверхность рыхлой массы бластомеров другого зародыша, то из пересаженной клетки разовьется ткань трофобласта.

Если большинство клеток бластоцисты дает начало тро- фобласту, то сколько же клеток фактически образует зародыш? Один из путей для получения ответа на этот вопрос заключается в создании аллофенных мышей. Аллофенные мыши являются результатом развития химерных зародышей, полученных путем слияния двух зародышей на ранних стадиях дробления (обычно 4- или 8-клеточных). У двух генетически различающихся зародышей удаляют прозрачную оболочку, и зародышей приводят в контакт для их слияния и образования единой бластоцисты. Полученные бластоцисты имплантируют в матку самки-реципиента. Рождающиеся мышата содержат клетки, которые произошли от обоих зародышей. Это хорошо видно, если используемые линии мышей различаются по окраске шерсти. Когда агрегируются бластомеры белых и черных мышей, то обычно развивается мышь с черными и белыми полосами. На основании изучения рождающихся аллофенных мышат был сделан вывод, что абсолютное число бластомеров, образующих зародыш, может быть равно 3 или ненамного превышать эту величину.

Первоначально морула не имеет внутренней полости. Однако в процессе так называемой кавитации клетки трофобласта секретируют в морулу жидкость, что приводит к образованию полости бластоцисты. Внутренняя клеточная масса располагается на одной стороне полого шара, образованного клетками трофобласта. Такая структура называется бластоцистой , и ее образование является еще одной отличительной особенностью дробления млекопитающих.

Пока зародыш перемещается по яйцеводу к матке, бластоциста увеличивается в объеме. В плазматических мембранах клеток трофэктодермы имеется натриевый насос (Ма + /К + -АТФаза), который переносит ионы натрия в центральную полость. Такое накопление ионов натрия вызывает поступление в полость воды осмотическим путем, в результате чего размеры полости бластоцисты увеличиваются. В период перемещения зародыша прозрачная оболочка предотвращает прилипание бластоцисты к стенкам яйцевода. Если у человека происходит такое прилипание, наблюдается «трубная беременность». Это крайне опасное явление, поскольку имплантация зародыша в яйцевод может вызвать угрожающее жизни кровотечение. Однако, когда зародыш достигает матки, он должен освободиться от прозрачной оболочки, чтобы прикрепиться к стенке матки.

Бластоциста мыши освобождается от оболочки путем лизиса в ней небольшого отверстия, через которое она выдавливается при увеличении своего объема. Гистологические данные свидетельствуют о том, что одна из клеток тро- фобластической стенки образует вырост, который приходит в контакт с прозрачной оболочкой. На плазматической мембране этого выроста локализована трипсиноподобная протеаза стрипсин, которая лизирует отверстие в фибриллярном матриксе оболочки. Освободившись от оболочки, бластоциста может вступить в непосредственный контакт с маткой. Здесь трофобласт будет секретировать другую трипсиноподобную протеазу, активатор плазминогена. Этот расщепляющий белок фермент необходим для разрушения ткани матки, чтобы бластоциста могла погрузиться в ее стенку.

Дробление – это деление оплодотворенной яйцеклетки (уже зародыша) митозом. Дочерние клетки называются бластомерами , они не расходятся. При дроблении очень короткие интерфазы, поэтому бластомеры не успевают расти, а, наоборот, с каждым делением становятся размерами все меньше и меньше, т.е. количество бластомеров увеличивается, а объем каждого отдельного бластомера уменьшается. Тип дробления зависит от типа яйцеклетки, т.е. от количества и распределения желтка, а также от взаимного расположения дробящихся клеток.

Выделяют следующие типы дробления зиготы.

Полное дробление голобластическое (holos – весь, blastos – зачаток) – в дроблении участвуют все участки зародыша. Это деление может быть:

равномерным (синхронным) – когда все бластомеры дробятся с одинаковой скоростью и поэтому количество их увеличивается по правильной прогрессии, т.е. происходит кратное увеличение бластомеров (1, 2, 4, 8 и т.д.). Характерно для яйцеклеток с малым количеством желтка, при этом образуются бластомеры примерно одинакового размера (ланцетник);

неравномерным (асинхронным ) – когда количество бластомеров увеличивается по неправильной прогрессии (1, 2, 3, 5 и т.д.). Характерно для яйцеклеток со средним содержанием желтка (круглоротые, хрящевые рыбы, земноводные). При этом образуются бластомеры неодинакового размера. Сначала в результате первых двух дроблений образуются бластомеры примерно одинакового размера, а затем на анимальном полюсе деление происходит быстрее, чем на вегетативном. В результате на анимальном полюсе образуется большее количество бластомеров, и они меньшего размера, чем на вегетативном полюсе. В дальнейшем эти бластомеры дифференцируются по-разному – из одних образуется тело зародыша, а другие выполняют трофическую функцию.

Неполное дробление (частичное) меробластическое – дробление идет только на анимальном полюсе, вегетативный полюс перегружен желтком и в дроблении не участвует. Это дробление может быть:

поверхностное – дробится поверхностная часть зиготы, а центральная часть, богатая желтком не делится (членистоногие);

дискоидальное – дробится небольшой участок зиготы, где мало желтка, а остальная часть, богатая желтком, не делится (костистые рыбы, пресмыкающиеся, птицы).

В зависимости от расположения делящихся клеток различают три типа дробления:

радиальное – когда верхний ряд бластомеров располагается точно над нижним рядом (кишечнополостные, иглокожие, низшие хордовые);

спиральное – когда верхний ряд бластомеров располагается между клетками нижнего ряда (большинство червей, моллюски);

двусимметричное (билатеральное )– когда делящиеся клетки располагаются симметрично по бокам от исходного бластомера (круглые черви, асцидии);

анархическое – отсутствие закономерности в расположении бластомеров у организмов одного вида.

В процессе деления зиготы часто сочетаются различные типы дробления. В процессе дробления развивающийся зародыш проходит последовательно три стадии развития – бластула , гаструла , нейрула .

Введение

Технологическая часть

Выбор оборудования 1 ступени дробления

Дробилки, которые подходят для установки в 1 ступени дробления подбираем по исходным данным:

1. По пределу прочности материала при сжатии σ сж =50·10 6 Па

2. По максимальному размеру куска исходного материала δ н.мах =0,8м.

Выбор машины раздавливающего или ударного действия можно сделать ориентировочно по табл.1.

Таблица 1

ЩДС-12х15.

При ширине разгрузочной щели а =110мм производительность равна:

где V - величина производительности дробилки;

К р - коэффициент размолоспособности;

Изменение ширины разгрузочной щели;

а - ширина разгрузочной щели.

- принимаем 1 дробилку

0 55 110 165 220 δ, мм

Рис.2. Характеристика дисперсионного состава исходного материала

При величине зазора а =110мм максимальный размер частиц на выходе из дробилки, согласно рис.2 будет равен:

Степень измельчения равна:

Тогда при Кδ=1,2 (см. рис. 3.7) и G= 25,79 кг/с,

мощность двигателя дробилки будет:

Что не превышает величины N дв выбранной дробилки (N дв =160кВт)

Следовательно, принимаем 1 дробилку ЩДС-12х15с N дв =160 кВт (на 1 дробилку 160 кВт).

Сопоставляя эти данные, выбираем дробилку М-13-11.

Построим кривую дисперсионного состава материала на выходе из дробилки. Для этого вычислим величины, необходимые для расчета:

Окружную скорость ротора по вершинам молотков

Массу идеального молотка

Проведем расчет конечного размера частиц при трех значениях δ н:

1. 165 мм; 2. 110мм; 3. 55мм.

В первом случае δ н =165мм;

Во втором случае δ н =110мм;

В третьем случае δ н =55мм;


0 55 110 165 220 δ,мм

Рис.3. Характеристика дисперсионного состава исходного материала

По конечному размеру частиц после измельчения выбираем шаровую мельницу. В нее рекомендуется загружать материал δ н.мах ≤ 6·10 -3 м. из рис. 3 следует, что 20% материала, выходящего из дробилки, составляют частицы размером больше 6·10 -3 м, эту долю материала необходимо до измельчить до размера δ н.мах ≤ 6·10 -3 м.

Отобранную на грохоте крупную фракцию материала возвращаем на доизмельчение в молотковую дробилку М-13-11.

Тогда полная производительность дробилки составит:

Количество дробилок, необходимое для обеспечения исходной объемной производительности равно:

- принимаем 1 дробилку.

При δ к.ма x =14,6мм величина α составит:

Окончательно принимаем α=32мм.

Мощность двигателя дробилки будет:

Что не превышает величины N дв выбранной дробилки (N дв =130кВт). Следовательно, принимаем 1 дробилку М-13-11 с N дв =130 кВт.

Высота сбрасывания материала в дробилку:

Охрана окружающей среды

Природоохранные вопросы при производстве цемента и извести в первую очередь включают следующее:

Выбросы в атмосферу

Потребление энергии и топлива

Сточные воды

Образование твердых отходов

1. Требования к санитарной охране водных ресурсов.

1.Сброс сточных и дренажных (далее - сточных) вод, откачиваемых из шахт и разрезов, после использования в процессах обогащения на обогатительных и брикетных фабриках, а также хозяйственно-бытовых стоков в водоемы допускается только после их эффективной очистки и обеззараживания с лабораторным контролем взвешенных и растворенных в воде веществ. В проекте очистных сооружений должен быть представлен расчет времени отстаивания сточных вод с обоснованием применения (или отказа от применения) коагулянтов и флокулянтов. Не допускается ввод в действие технологического оборудования до пуска в эксплуатацию сооружений по очистке сточных вод.

2. Производительность сооружений по очистке вод должна рассчитываться на возможное увеличение мощности предприятий (не менее 20-летнего срока) в соответствии с требованиями СНиП "Водоснабжение. Наружные сети и сооружения. Нормы проектирования" и СНиП "Канализация. Наружные сети и сооружения. Нормы проектирования".

3. Схемы водоснабжения предприятий должны предусматривать организацию оборотных циклов использования воды в технических целях.

4. Сброс сточных вод предприятий в водоемы должен осуществляться при строгом соблюдении требований к качеству сбрасываемой воды у первого пункта водопользования ниже по течению в соответствии с СанПиН "Охрана поверхностных вод от загрязнений", СанПиН "Санитарные нормы предельно допустимого содержания вредных веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования" и дополнений к нему, "Методическими указаниями по санитарной охране водоемов от загрязнения сточными водами предприятий угольной промышленности".

5. Санитарной охране подлежат реки, водохранилища, озера, ручьи, пруды, искусственные каналы, а также подземные воды, используемые для хозяйственно-питьевых, культурно-бытовых и бальнеологических целей.

6. Поверхностные сточные воды с территории предприятий и смывы с полов производственных помещений перед сбросом в водоемы должны подвергаться локальной очистке или направляться на общие очистные сооружения.

7. Очистные сооружения предприятий, должны соответствовать "Нормативным требованиям по проектированию и строительству предприятий, зданий и сооружений в условиях северной строительно-климатической зоны, вечномерзлых грунтов и отрицательных температур".

2. Требования к санитарной охране атмосферного воздуха и земельных ресурсов.

1. Санитарная охрана атмосферного воздуха в районах размещения предприятий известковой промышленности должна осуществляться в соответствии с СанПиН "Гигиенические требования к охране атмосферного воздуха населенных мест" , ГОСТ "Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями". Действующие предприятия должны иметь нормативы предельно допустимых выбросов, согласованные и утвержденные в установленном порядке.

2. Проекты эксплуатации, тушения и разработки горючего сырья должны быть разработаны в соответствии с отраслевыми инструкциями.

3. Сырьевые склады должны располагаться за пределами населенных пунктов и предприятий с подветренной (для ветров преобладающего направления) стороны к предприятию, жилым зданиям, зданиям общественного и коммунального назначения стороны.

4. Для предотвращения загрязнения атмосферного воздуха продуктами горения и пылью должны приниматься эффективные меры по предупреждению самовозгорания. Запрещается эксплуатация горящего сырья и подлежит обязательному тушению.

5. Во время тушения следует производить измерение концентраций оксида углерода и сернистого ангидрида на рабочих местах в начале каждой смены. При содержании вредных газов в количестве, превышающем допустимые нормы, должны приниматься меры, обеспечивающие безопасность работ.

6. Использование твердых отходов в отраслях промышленности, в том числе в стройиндустрии, возможно только с разрешения органов Госсанэпиднадзора.

7. При перевозке извести в железнодорожных вагонах и на платформах должны быть предусмотрены меры по предотвращению просыпей и сдувания пыли.

8. Запрещается складирование и выгрузка извести и породы в неустановленных местах при их вывозке канатными дорогами, автомобильным, конвейерным или рельсовым транспортом.

9. При ликвидации предприятия в Технико-экономическом обосновании по его закрытию должны предусматриваться меры и средства на устранение неблагоприятных экологических последствий прекращения деятельности.

Охрана труда

1.Техника безопасности

1. В соответствии с Руководством "Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса". Руководитель предприятия обязан обеспечить работников, занятых на производствах с вредными и опасными условиями труда, средствами коллективной и индивидуальной защиты, смывающими и обеззараживающими препаратами в соответствии с "Типовыми отраслевыми нормами бесплатной выдачи рабочим и служащим специальной одежды, специальной обуви и других средств индивидуальной защиты" и ГОСТом "Средства индивидуальной защиты работающих. Общие требования и классификация", обучить правилам их применения и контролировать использование. Применение СИЗ не должно заменять требований по разработке и осуществлению технических мероприятий по снижению уровней опасных и вредных производственных факторов до допустимых гигиенических нормативов.

2. Для защиты органов дыхания от пыли все лица, занятые на работах, где возможно содержание ее в воздухе выше уровня ПДК, должны быть обеспечены респираторами, соответствующими требованиям ГОСТа ССБТ "Средства индивидуальной защиты органов дыхания". Режимы применения респираторов должны устанавливаться с учетом концентрации пыли в воздухе рабочей зоны и времени пребывания в них работающих и согласовываться с органами Госсанэпиднадзора. Должны быть определены производственные операции, выполнение которых без респираторов не допустимо. Разрешается пользование респираторами только тех типов, технические характеристики которых согласованы с органами Госсанэпиднадзора.

3. Рабочие, подвергающиеся воздействию интенсивного шума, в том числе в подземных горных выработках, должны применять индивидуальные средства защиты, соответствующие требованиям ГОСТа "Средства индивидуальной защиты органов слуха. Общие технические условия". При выборе индивидуальных средств защиты необходимо учитывать спектральную характеристику акустических колебаний (Прил. 6).

4. Рабочие должны быть обеспечены средствами индивидуальной защиты от вибрации (антивибрационные рукавицы, обувь и др.). Средства индивидуальной защиты от вибрации должны соответствовать ГОСТу "Средства индивидуальной защиты рук от вибрации. Общие технические требования и методы испытаний" и ГОСТу "Обувь специальная виброзащитная. Общие технические требования".

5. Для защиты кожи от воздействия вредных веществ, высокой или низкой температуры поверхностей органов управления рабочие должны обеспечиваться защитными средствами, соответствующими ГОСТу ССБТ "Одежда специальная защитная. Средства индивидуальной защиты ног и рук. Классификация". В качестве СИЗ кожи рук от пыли и вредных веществ должны применяться рукавицы, перчатки, защитные мази и пасты, соответствующие требованиям ГОСТа ССБТ "Средства дерматологические защитные. Классификация. Общие технические требования".

6. Хранение, использование, ремонт, чистка и другие виды профилактической обработки специальной одежды, обуви и других средств индивидуальной защиты должны осуществляться в соответствии с требованиями "Инструкции о порядке обеспечения рабочих и служащих специальной одеждой, специальной обувью и другими средствами индивидуальной защиты". Вынос СИЗ с предприятия запрещается.

7. Водозащитная спецодежда и влажная спец-обувь должны просушиваться при температуре не выше 50 °С после каждой смены. Кожаная спец-обувь должна после просушки смазываться смягчающей мазью.

8. Спец-обувь должна подвергаться мойке с применением 5% раствора хлорамина Б или 1% раствора фитона в течение 15 мин. или другими допущенными к применению дезинфицирующими средствами. Санитарной обработке с использованием дезинфекционных средств должны также подвергаться респираторы, защитные каски, подтяжки и носки.

9. Спецодежда и спецобувь больных гнойничковыми заболеваниями кожи и грибковыми болезнями стоп и кистей должна подвергаться ежедневной дезинфекции 5% раствором хлорамина Б или другими дезинфицирующими средствами.

2. Требования безопасности во время работы

1. Дробильщик обязан работать в установленной спецодежде и обуви, использовать средства индивидуальной защиты: респиратор, вкладыши противошумные, защитную каску.

2. Дробильщик обязан: быть внимательным и выполнять требования установленных звуковых и световых сигналов; передвигаться по установленным проходам и переходным мостикам; содержать свое рабочее место в чистоте, не допуская загромождения его посторонними предметами; при сдаче смены докладывать сменному мастеру о неполадках в работе дробилки и мерах, принятых по их устранению, сделать запись в журнале приема-сдачи смены.

3. Запуск дробилки в работу производится дробильщиком через 1 - 2 мин. после подачи установленных звуковых или световых сигналов. При дистанционном централизованном управлении технологическим оборудованием запуск дробилки производится диспетчером завода с пульта управления. Перед запуском оборудования в работу подается предупредительный световой и звуковой сигнал. Дробильщик, получив сигналы, должен отойти на безопасное расстояние от оборудования. Условные обозначения подаваемых сигналов должны быть вывешены на рабочем месте дробильщика.

4. Пуск дробилки и ее эксплуатация производятся в соответствии с инструкцией по эксплуатации. При наличии при пуске непривычного шума, стука, указывающих на неисправность дробилки, дробилку следует выключить, сообщить мастеру и не включать до устранения неисправностей.

5. Снимать и устанавливать ограждения; подтягивать пружины, болты; смазывать подшипники вручную, надевать и снимать клиновые ремни; регулировать размер разгрузочной щели; производить очистку дробилки, осмотр механизмов; выполнять ремонтные работы допускается только после полной остановки дробилки, отключения от электросети электродвигателя, снятых предохранителях. Отключение от сети производить в диэлектрических перчатках, стоя на изолирующем коврике. На пусковом устройстве следует вывесить табличку "Не включать! Работают люди!".

6. Дробильщику во время работы дробилки запрещается: заглядывать в зев дробилки; производить осмотр механизмов вблизи движущихся частей; уходить без разрешения мастера со своего рабочего места.

7. В случае прекращения подачи электроэнергии дробильщик обязан отключить электродвигатель от сети и полностью очистить дробильную камеру от материала.

8. Дробильщик должен основное время находиться в помещении (кабине), обеспечивающем достаточный обзор зоны обслуживания, оборудованном пультом управления, телефоном. Если по условиям работы дробильщик находится вне кабины, то он обязан пользоваться средствами индивидуальной защиты: защитной каской, вкладышами противошумными, респиратором.

9. Большие недробимые куски камня нужно удалять из зева подъемными средствами со специальными приспособлениями. Извлекать застрявшие в рабочем пространстве дробилки куски породы вручную и дробить их кувалдами запрещается.

10. Для предотвращения аварийных ситуаций необходимо не допускать перегрузки дробилки, следить за работой централизованной смазки конусной дробилки, следить за состоянием шкива и маховика щековой дробилки.

11. При выполнении ремонтных работ на дробилках спуск дробильщика в рабочее пространство дробилки необходимо осуществлять с использованием лестниц и применением предохранительных поясов. При этом над загрузочным отверстием дробилки должен быть устроен временный настил, исключающий падение различных предметов на людей. Прикреплять предохранительный пояс следует только к постоянным, надежно укрепленным конструкциям. Места закрепления должны быть обозначены на конструкциях.

12. При выполнении слесарных работ дробильщик обязан пользоваться исправным инструментом. Кувалды, молотки должны быть прочно насажены на деревянные ручки. Гаечные ключи должны соответствовать размерам гаек и болтов. Наращивать ключ другим ключом запрещается. При необходимости следует пользоваться ключом с удлиненной рукояткой.

13. По окончании ремонта дробильщик должен убрать с дробилки инструмент, запчасти и другие предметы.

14. Пуск дробилки в работу после ремонта дробильщик должен производить под руководством мастера или бригадира, производившего ремонтные работы.

Технико-экономическая часть

При выборе предварительного оборудования для первой стадии дробления учитывалось:

Предел прочности материала при сжатии σ сж =50·10 6 Па;

Размер загружаемого куска δ н.мах, мм;

Минимальная ширина разгрузочной щели α, мм, с учетом регулирования Δα, мм;

Соответствие исходной производительности;

Минимальная мощность двигателя N дв .

Для первой ступени дробления подходят дробилки ЩДС-12х15; ККД-1000/150 и ДДЗ-16.

Таблица 8

Варианты дробилок для 1 ступени дробления

Сопоставляя эти данные, выбираем дробилку ЩДС-12х15, потому что другие 2 дробилки потребляют мощность в два раза больше чем выбранная и максимальный размер частиц на выходе из дробилки по отношению к другим.

Для второй ступени дробления материала подходят дробилки КСД-1750Гр; ЩДС-6х9; ДДЗ-6 и М-13-11.

Таблица 9

Варианты дробилок для 2 степени дробления

Сопоставляя эти данные, выбираем дробилку М-13-11 . Другие дробилки и проходят по мощности, но максимальный размер куска на выходе из дробилки имеет минимальное значение выбранная дробилка. В результате чего не требуется дополнительной ступени дробления.

Для второй стадии измельчения с требуемой величиной мощности (1,3…1,5)N шз =334…385,5кВт выбираем шаровую мельницу сухого помола ШБМ-287/470 с N дв = 410кВт, так как другие дробилки имеют большой запас мощности (ШБМ-287/410 с N дв = 650кВт и ШБМ-320/570 с N дв = 700кВт) или не проходят по мощности и масса загружаемых шаров меньше,чем требуемая.

Приложение.

Таблица 1

Введение

ДРОБЛЕНИЕ - процесс разрушения кусков руды, угля и другого твёрдого материала с целью получения требуемой крупности (более 5 мм), гранулометрического состава или степени раскрытия минералов.

Дробление основано на действии внешних сил - сжатии, растяжении, изгибе или сдвиге, которые проявляются в максимальной степени в ослабленных сечениях куска, вызванных дефектами его структуры (размером формой), слоистостью, пористостью и трещиноватостью. Для процессов дробления наиболее важные характеристики - прочность (крепость) и дробимость кусков. Для энергетической оценки дробления выдвинуто и используется в расчётах несколько гипотез: о пропорциональности элементарной работы дробления приращению площади поверхности куска или квадрату его диаметра; о пропорциональности элементарной работы деформации куска изменению его первоначального объёма или куба его диаметра; о пропорциональности элементарной работы, затрачиваемой на дробление куска, изменению его первоначального объёма и приращению площади поверхности куска о связи напряжения на концах трещин куска и критической длиной трещины; о пропорциональности элементарной работы дробления среднегеометрического приращению объёма и площади поверхности.

Предпочтительные области применения гипотез: при крупном дроблении (приращение поверхности мало) работу дробления определяют по гипотезе Кирпичёва; при мелком дроблении (измельчении, истирании) - по гипотезе Риттингера. Закон Бонда достаточно точно применим при среднем дроблении. Теория дробления позволяет количественно описывать процессы дробления в машинах различных типов и их параметры - работу дробления, мощность двигателя, производительность, наибольшие усилия дробления и т.п.

Дробление может быть осуществлено следующими методами: раздавливания, наступающего вследствие превышения напряжений деформации предела прочности материала на сжатие; раскалывания - из-за расклинивания (растяжения) и последующего разрыва куска; излома - из-за изгиба; срезывания - из-за сдвига; истирания, проявляющегося в малой степени - из-за сдвига и последующего срезывания; удара - из-за действия напряжений сжатия, растяжения, изгиба и сдвига. Раздавливание применяется, как правило, при крупном и среднем дроблении твёрдых горных пород и углей, раскалывание или удар - преимущественно для хрупких и вязких пород (углей, известняков, асбестовых руд и т.п.). Предел прочности кусков на растяжение в десятки раз меньше, однако по конструктивным соображениям в современной практике дробления основным разрушающим воздействием является раздавливание.

По виду реализации методов дробления его делят на механическое (наиболее распространённое), пневматическое, или взрывное, электрогидравлическое, электроимпульсное, электротермическое, аэродинамическое, по способу воздействия на материал - на статическое и динамическое. Статические способы механического дробления - раздавливание, раскалывание, излом. Проводят в щёковых, конусных и валковых дробилках. Динамические способы дробления - удар, истирание (роторные дробилки), раскалывание, раздавливание (стержневые дробилки-дезинтеграторы). По крупности конечного продукта выделяют крупное (100-350 мм), среднее (40-100 мм), мелкое дробление (5-40 мм). По технологическому назначению - подготовительное (для подготовки материала к обогащению или др. видам переработки), окончательное (когда продукты дробления являются товарными, например, при выпуске сортовых углей), избирательное (при котором один из компонентов материала, отличающийся меньшей прочностью, под действием одинаковой внешней силы разрушается интенсивнее другого, более прочного).

Процесс дробления обычно соединяют с предварительным грохочением, когда весь исходный материал сначала поступает на грохот, а в дробилку направляются лишь крупные куски, подрешётный продукт грохота уходит далее, минуя дробилку. Существуют открытый и замкнутый циклы дробления.

При открытом цикле дробления продукт проходит через дробилку только один раз. При замкнутом - продукт из дробилки поступает на грохот, недостаточно раздробленные куски вновь направляются в дробилку на дополнительное дробление, а мелкие - на последующую обработку. При замкнутом цикле дробления улучшается качество продукта (гранулометрический состав однороден), снижается расход энергии и износ частей дробилки. В зависимости от требуемой крупности готового продукта для получения высокой степени дробления применяют последовательно несколько стадий дробления: при дроблении руд цветных металлов, как правило, 2, 3 или 4, руд чёрных металлов и угля 2 или 3 стадии.

Развитие теории дробления связывается с уточнением закономерностей и конструктивной разработкой износоустойчивых машин и аппаратов с минимальными удельными энергозатратами дробления.

Технологическая часть

Выбор оборудования I стадии – дробления